Intrinsic convergence properties of entropic sampling algorithms

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On entropic convergence of algorithms in terms of domain partitions

The paper describes an approach to measuring convergence of an algorithm to its result in terms of an entropy-like function of partitions of its inputs of a given length. The goal is to look at the algorithmic data processing from the viewpoint of information transformation, with a hope to better understand the work of algorithm, and maybe its complexity. The entropy is a measure of uncertainty...

متن کامل

Convergence Properties of Kronecker Graphical Lasso Algorithms

This report presents a thorough convergence analysis of Kronecker graphical lasso (KGLasso) algorithms for estimating the covariance of an i.i.d. Gaussian random sample under a sparse Kronecker-product covariance model. The KGlasso model, originally called the transposable regularized covariance model by Allen et al [1], implements a pair of `1 penalties on each Kronecker factor to enforce spar...

متن کامل

Convergence Properties of the K-Means Algorithms

This paper studies the convergence properties of the well known K-Means clustering algorithm. The K-Means algorithm can be described either as a gradient descent algorithm or by slightly extending the mathematics of the EM algorithm to this hard threshold case. We show that the K-Means algorithm actually minimizes the quantization error using the very fast Newton algorithm.

متن کامل

Convergence Properties of (μ + λ) Evolutionary Algorithms

Introduction Evolutionary Algorithms (EA) are a branch of heuristic population-based optimization tools that is growing in popularity (especially for combinatorial and other problems with poorly understood landscapes). Despite their many uses, there are no proofs that an EA will always converge to the global optimum for any general problem. Indeed, only for a set of trivial functions there are ...

متن کامل

Asymptotic Convergence Properties of EM Type Algorithms

We analyze the asymptotic convergence properties of a general class of EM type algorithms for es timating an unknown parameter via alternating estimation and maximization As examples this class includes ML EM penalized ML EM Green s OSL EM and many other approximate EM al gorithms A theorem is given which provides conditions for monotone convergence with respect to a given norm and speci es an ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Statistical Mechanics: Theory and Experiment

سال: 2014

ISSN: 1742-5468

DOI: 10.1088/1742-5468/2014/07/p07007